Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis.

نویسندگان

  • Anhuai Lu
  • Yan Li
  • Song Jin
  • Xin Wang
  • Xiao-Lei Wu
  • Cuiping Zeng
  • Hongrui Ding
  • Ruixia Hao
  • Ming Lv
  • Changqiu Wang
  • Yueqin Tang
  • Hailiang Dong
چکیده

Phototrophy and chemotrophy are two dominant modes of microbial metabolism. To date, non-phototrophic microorganisms have been excluded from the solar light-centered phototrophic metabolism. Here we report a pathway that demonstrates a role of light in non-phototrophic microbial activity. In lab simulations, visible light-excited photoelectrons from metal oxide, metal sulfide, and iron oxide stimulated the growth of chemoautotrophic and heterotrophic bacteria. The measured bacterial growth was dependent on light wavelength and intensity, and the growth pattern matched the light absorption spectra of the minerals. The photon-to-biomass conversion efficiency was in the range of 0.13-1.90‰. Similar observations were obtained in a natural soil sample containing both bacteria and semiconducting minerals. Results from this study provide evidence for a newly identified, but possibly long-existing pathway, in which the metabolisms and growth of non-phototrophic bacteria can be stimulated by solar light through photocatalysis of semiconducting minerals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Metabolic Pathways in Phototrophic Bacteria and Their Broader Evolutionary Implications

Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the proces...

متن کامل

Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments.

Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of li...

متن کامل

Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803

Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria n...

متن کامل

Plasmonic harvesting of light energy for Suzuki coupling reactions.

The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanop...

متن کامل

Solar Light-Induced Decolorization of Safranin O Using Unmodified and Gold-Modified Semiconductor Oxides

Unmodified and gold-modified semiconductor oxides were used for the complete decolorization of non-buffered aqueous safranin O solutions. Photocatalytic properties of commercially available ZnO and TiO2 (anatase nanopowder) were compared with those of gold-modified ZnO (Au/ZnO). Au/ZnO was obtained from commercial ZnO powder through direct current sputter coating. ZnO-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012